Search for sterile neutrinos at MiniBooNE

Michel Sorel

Outline

Chapter 1: Neutrino oscillations, and the evidence for neutrino masses and mixings

Chapter 2: Phenomenology of sterile neutrinos

Chapter 3: The MiniBooNE experiment

Chapter 4: The BooNE neutrino flux

Chapter 5: Neutrino interactions in the $\sim 1~{\rm GeV}$ energy regime

Chapter 6: Event reconstruction in MiniBooNE

Chapter 7: Event selection for the ν_{μ} disappearance analysis

Chapter 8: The ν_{μ} disappearance analysis: method and results

II: Phenomenology of sterile neutrinos

- 1. Limitations of models with no sterile neutrinos
 - $\bullet \ \Delta m_{sol}^2 + \Delta m_{atm}^2 \neq \Delta m_{LSND}^2$
- 2. Present constraints on sterile neutrinos in the quasitwo neutrino approximation
- 3. Combined analysis of accelerator and reactor shortbaseline neutrino data for various sterile neutrino models
- 4. Analysis of supernova neutrino data for various sterile neutrino models
- 5. Measuring sterile neutrinos via the disappearance of muon neutrinos in a accelerator, short-baseline neutrino oscillation experiment

Combined analysis of SBL experiments

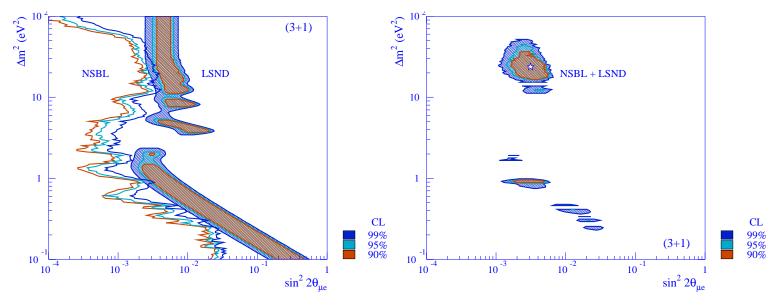
- A motivation for MiniBooNE ν_{μ} disappearance search. More details on this work in hep-ph/0305255
- Combined analysis because SBL experiments
 - 1. ν_{μ} disappearance (CCFR84, CDHS)
 - 2. $\bar{\nu}_e$ disappearance (Bugey, CHOOZ)
 - 3. $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ appearance (LSND, KARMEN)

probe same Δm^2 's and matrix elements:

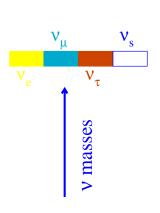
$$\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \\ \nu_s \\ \nu_{s'} \\ \vdots \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} & U_{e5} & \dots \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} & U_{\mu 5} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} & U_{\tau 5} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} & U_{s5} \\ U_{s'1} & U_{s'2} & U_{s'3} & U_{s'4} & U_{s'5} \\ \vdots & & & & & & & & \\ \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \\ \nu_4 \\ \nu_5 \\ \vdots \end{pmatrix}$$

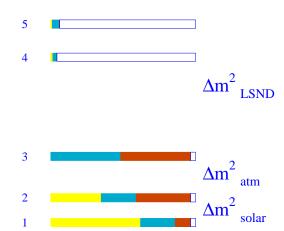
- Combined analysis of past SBL data can tell:
 - 1. whether one can consistently explain the solar, atmospheric, LSND, and the null short-baseline results via oscillations
 - 2. what are the favored values from past experiments for Δm_{41}^2 , $U_{\mu 4}$, Δm_{51}^2 , $U_{\mu 5}$, etc. \Rightarrow what are the expectations for ν_{μ} disappearance
 - \Rightarrow what are the expectations for ν_{μ} disappearance at MiniBooNE? Can be at the 10-20% level ($\gg \nu_e$ appearance), and for accessible Δm^2 values
- Oscillation physics reach of $\nu_{\mu} \to \nu_{e}$ and $\nu_{\mu} \to \nu_{\mu}$ searches is quite complementary

Results on (3+1) models



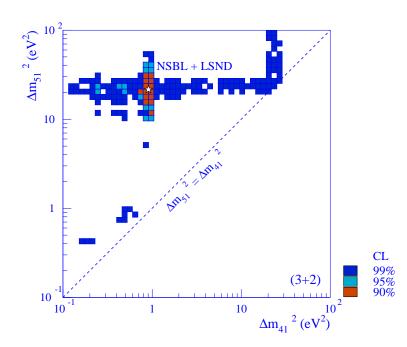
• $\Delta m_{43}^2 \gg \Delta m_{32}^2 \gg \Delta m_{21}^2$: two-neutrino approximation is satisfied. Can define:


$$\Delta m^2 \equiv \Delta m_{41}^2, \quad \sin^2 2\theta_{\mu e} \equiv 4U_{e4}^2 U_{\mu 4}^2$$


- Two analyses:
- 1: Compatibility of SBL data in (3+1) by looking at LSND and NSBL allowed regions separately

2: Best-fit values in (3+1) by combined analysis (assumes statistical compatibility)

Results on (3+2) models

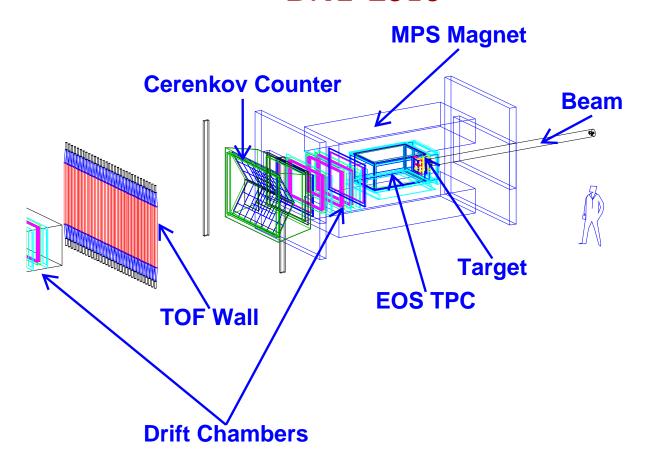

- Six parameters probed: $\Delta m^2_{41},\ U_{e4},\ U_{\mu 4},\ \Delta m^2_{51},\ U_{e5},\ U_{\mu 5}$
- More than one Δm^2 in the oscillation probability
- Instead of $\sin^2 2\theta_{\mu e}$ limit, use NSBL to constrain the $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ probability averaged over the LSND L/E distribution:

$$p_{LSND} \equiv \langle P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) \rangle_{LSND}$$

• (3+2) models describe SBL data (and LSND oscillations) significantly better than (3+1)

Best-fit values for mass splittings in (3+2):

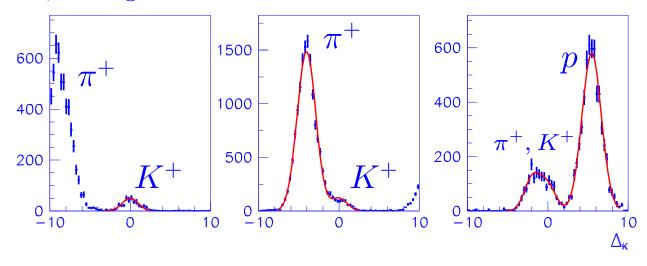
will update soon with NOMAD $\nu_{\mu} \rightarrow \nu_{e}$ results

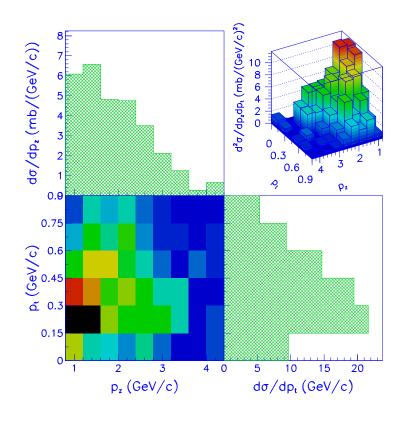

IV: The BooNE neutrino flux

- 1. Overview of the BooNE neutrino beamline
- 2. Analyses of non-MiniBooNE pion production data to understand the MiniBooNE neutrino flux
- 3. The magnetic focusing horn and its impact on the neutrino flux
- 4. Expected neutrino fluxes from Monte-Carlo simulations

Motivation for non-MiniBooNE pion production analyses

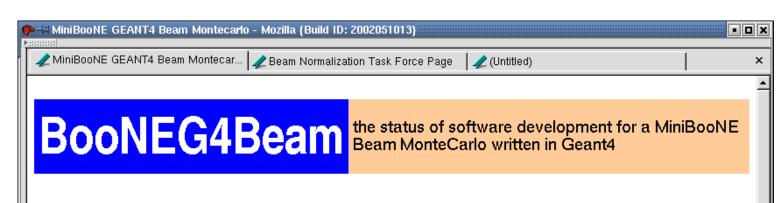
- Uncertainty in MiniBooNE ν_{μ} flux dominated by uncertainty in π^{\pm} production in p-Be interactions
- Understanding the flux and its associated systematic uncertainties is key in almost all MiniBooNE analyses: oscillation, cross-section, exotics analyses
- π^{\pm} 's we care the most: $p_{\pi} = 1 4 \text{ GeV/c}$, $\theta_{\pi} < 200 \text{ mrad}$
- So far we have flux estimates from hadronic models with large uncertainties and/or optimized for energy ranges not relevant to MiniBooNE
- In MiniBooNE, we are working on tuning our flux estimates based on various sources of non-MiniBooNE data:
 - 1. Compilation and reanalysis of existing π^{\pm} production cross-sections
 - 2. Extracting cross-sections from BNL E910 data on thin Be target. (Published results cover only p < 1.2 GeV/c)
 - 3. Extracting cross-sections from CERN HARP data on thin and thick Be targets, at precisely Booster proton energies
- Will need K^{\pm} , K_L^0 cross-sections as well for the the intrinsic ν_e background estimates for the $\nu_{\mu} \rightarrow \nu_{e}$ (\Rightarrow HARP, E910)


BNL E910


- Data exists for 6.0 and 12.5 GeV/c proton beam momentum on 5% λ_I Be target
- Subdetectors give Particle ID at all pion momenta and angles of relevance to us:
 - 1. dE/dx information from TPC $\Rightarrow p_{\pi} < 1 \text{ GeV/c}, p_{\pi} > 3 \text{ GeV/c}$
 - 2. velocity information from TOF wall $\Rightarrow p_{\pi} < 3 \text{ GeV/c}$
 - 3. Light in Cherenkov threshold detector $\Rightarrow p_{\pi} > 3 \text{ GeV/c}$
- Preliminary K^+ analysis to draw from, for π^{\pm} analysis
- Bi-weekly meetings held with E910 people. Goal: have E910 cross-sections in the beam MC this summer

BNL E910 K^+ analysis

• Cut on dE/dx and Cherenkov photons to reject pions and protons, fit K^+ yields using TOF residuals distributions, taking into account contamination:



Preliminary results on $d^2\sigma/dp_zdp_t$ for the inclusive process $p+Be\to K^++X$ at 12.5 GeV/c

GEANT4-based beam MC

- Motivation for using G4 instead of G3 for the Mini-BooNE beam MC is its capability of being easily interfaced with a user-defined hadronic model. Applications:
 - 1. Use external data to model p-Be inelastic interactions (and others), and therefore to predict the MiniBooNE ν_{μ} , ν_{e} flux
 - 2. Predict uncertainties and energy bin-to-bin correlations for the ν_{μ} , ν_{e} flux, based on experimental data
- Code uses the same G3 BooNE geometry files, and can also run with HARP geometry files
- Four production physics models currently implemented:
 - 1. MARS
 - 2. Sanford-Wang parametrization of ZGS π^{\pm} production data
 - 3. GFLUKA
 - 4. "Customizable" Sanford-Wang parametrization for π^{\pm} , for beam MC tuning and understanding of flux systematic uncertainties
- Code framework does not require any major modifications to link additional physics input on $p, \pi^{\pm}, K^{\pm}, K_L^0$ production for primary p-Be interactions, such as:
 - 1. updated and MiniBooNE-specific S-W fits
 - 2. E910
 - 3. HARP

News, Status and Results

- 04-Jul-2003: BooNEG4Beam v1.3 in CVS.
- Results on the neutrino flux from G4, for three different physics models (v1.1)
- Validation of the code, by comparing BooNEG4Beam with the GEANT3 beam MC, for both the MARS and GFLUKA models (v1.1)
- BooNEG4Beam picture gallery
- To-do list, as of 04-Jul-2003

Useful Information

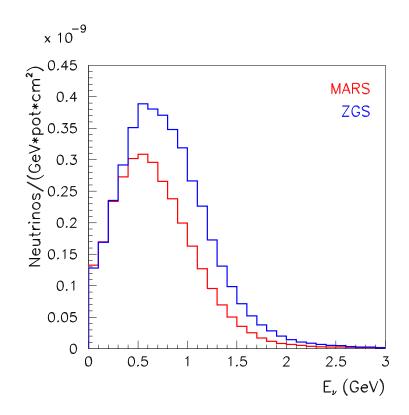
- Output ntuples variables key can be found here
- List of all commands available to the user in the jobOptions file can be found here (MiniBooNE specific commans are in the /boone/ subdirectory)
- The currently implemented tracking thresholds in range and energy for various particles and materials can be found here
- List of known GEANT4 bugs affecting MiniBooNE

BooNEG4Beam Releases

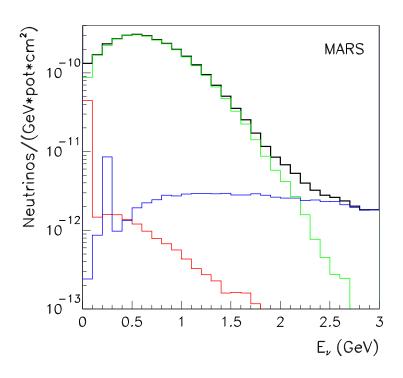
• Release R1-3: source code in CVS (posted 04-Jul-2003)

Main changes and bug fixes are:

- more commands available in the jobOptions file, to characterize the primary beam description and the horn magnetic field
- flag to fill ntuple 3000, containing information about all particles relevant for neutrino production after the cone collimator. Useful input for the NUSPEK program.
- Added Kaon Zero Long production in p-Be interactions. The list of secondaries produced is now: protons, charged pions, charged kaons, klongs
- Muon polarization in muon rest frame is now stored in ntuple 1000. The polarization is calculated from the parent pion and muon momentum, for a (V-A) interaction.
- Fixed bug for which muons capturing at rest were giving nues and not numus.
- More details can be found in the release notes


Beam normalization task force and G4 certification

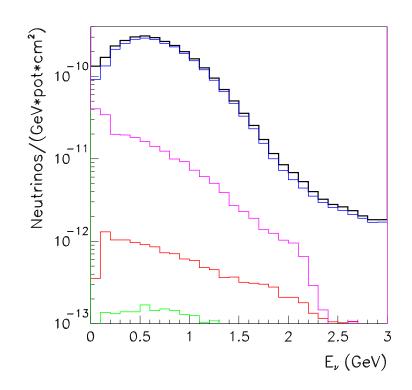
- Measured neutrino interaction rate is about 1.6 times higher than what predicted by current MARS/NUANCE/detMC/AF analysis chain
- Task-force extablished to verify all intermediate steps in the data/MC comparison
- Beam group activities:
 - 1. bug hunting
 - 2. comparison of results from alternative simulation tools
 - 3. improving simulation tools
 - 4. comparison of results from alternative physics models
- ullet See: http://www-boone.fnal.gov/beam_norm/
- Working on the above aspects for the G4 beam MC
- G4 certification progressing well (no known bugs at this time), thorough note documenting it is in the works


Expected G4 neutrino fluxes

• Dependencies on production model:

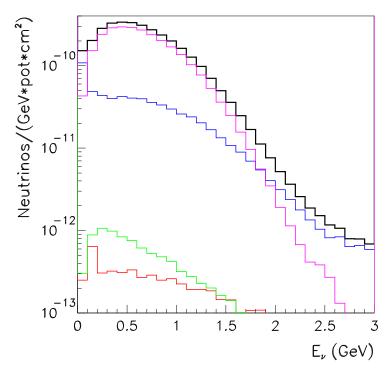
Model	$\phi((pot\cdot cm^2)^{-1})$
MARS	$3.06 \cdot 10^{-10}$
ZGS	$4.15\cdot 10^{-10}$

ν parent	$\phi((pot \cdot cm^2)^{-1})$	Frac (%)
μ	$5.69 \cdot 10^{-12}$	1.9
π	$2.92 \cdot 10^{-10}$	95.7
k	$7.50\cdot 10^{-12}$	2.4
Total	$3.06 \cdot 10^{-10}$	100.0



Expected G4 neutrino fluxes (cont'd)

• Flavor composition in ν and $\bar{\nu}$ running mode:


ν running mode:

ν type	$\phi((pot \cdot cm^2)^{-1})$	Frac (%)
ν_e	$1.34 \cdot 10^{-12}$	0.4
$ar{ u}_e$	$2.48 \cdot 10^{-13}$	0.1
$ u_{\mu}$	$2.81 \cdot 10^{-10}$	92.0
$ar{ u}_{\mu}$	$2.29 \cdot 10^{-11}$	7.5
Total	$3.06 \cdot 10^{-10}$	100.0

$\bar{\nu}$ running mode:

ν type	$\phi((pot \cdot cm^2)^{-1})$	Frac (%)
ν_e	$5.28 \cdot 10^{-13}$	0.2
$ar{ u}_e$	$8.96 \cdot 10^{-13}$	0.3
$ u_{\mu}$	$6.12 \cdot 10^{-11}$	18.5
$ar{ u}_{\mu}$	$2.66 \cdot 10^{-10}$	81.0
Total	$3.28 \cdot 10^{-10}$	100.0

V: Neutrino interactions in the $\sim \! 1$ GeV energy range

- 1. Overview
- 2. Nuclear effects
- 3. The quasi-elastic interaction
- 4. Other neutrino interactions

- 5. Expected neutrino cross-sections as a function of energy and final state kinematics from Monte-Carlo simulations
- Assume cross-sections for ν_{μ} disappearance analysis
- Final state kinematics: need accurate fractions of interaction types, and $d^2\sigma/dE_\mu dE_\nu$ for $\nu_\mu n \to \mu p$ and all other important processes

$$\begin{array}{c} \nu_{\mu}+^{12}C\rightarrow\mu^{-}N\\ \\ \nu_{\mu}+^{12}C\rightarrow\nu_{\mu}N\\ \\ \nu_{\mu}+^{12}C\rightarrow\nu_{\mu}\pi^{0}N\\ \\ \nu_{\mu}+^{12}C\rightarrow\mu^{-}\pi^{+}N\\ \end{array}$$

V: Event reconstruction in MiniBooNE

- 1. Overview of the MiniBooNE detector
- 2. The MiniBooNE optical model
- 3. Event vertex reconstruction
- 4. Track direction reconstruction
- 5. Visible energy reconstruction
- 6. Final state reconstruction

VI: Event selection for the ν_{μ} disappearance analysis

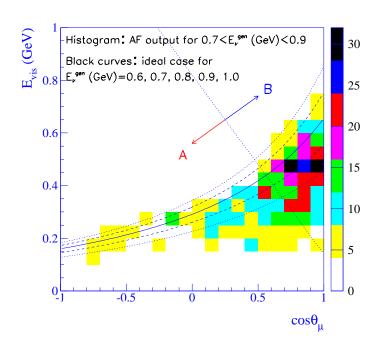
- 1. Physics considerations for the event selection criteria
- 2. Description of the event selection criteria
 - PMT hit coarse time information
 - PMT hit fine time information
 - PMT hit spatial topology
- 3. Efficiency and biases in the event reconstruction and selection

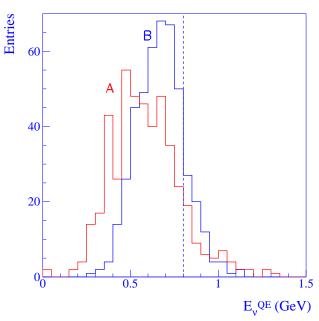
VII: The u_{μ} disappearance analysis

1. Overview

- How to do the analysis: look for neutrino energydependent shape distortions of the observed neutrino rate distributions with respect to the no-oscillation expectation
- Advantages of a normalization-free analysis
- Observables used
- 2. Systematic uncertainties
- 3. The oscillation fitting code
- 4. MiniBooNE sensitivity to $\nu_{\mu} \rightarrow \nu_{\mu}$ oscillations
 - Sensitivity in the quasi-two neutrino approximation
 - Sensitivity in more general neutrino models
- 5. Data sample used in the analysis
- 6. Results
 - Compatibility between data and the no-oscillation hypothesis
 - Constraints in neutrino mass and mixing parameter space
- 7. The future: expected improvements

Observables used in the analysis

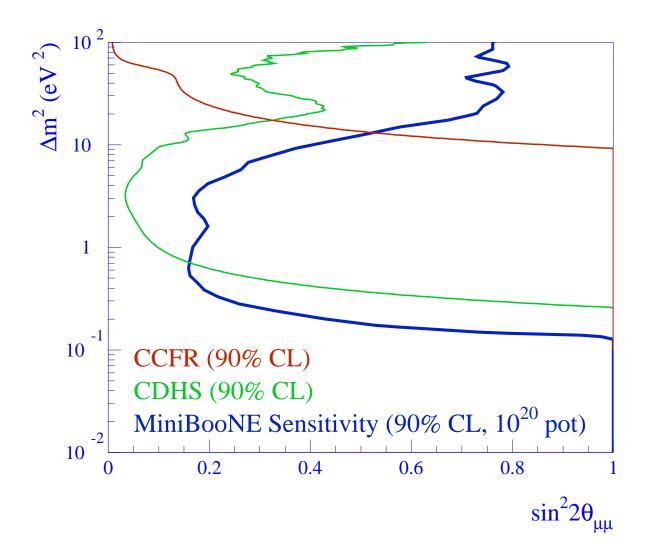

- One nice possibility (e.g. K2K) is to combine:
 - 1. observed muon energy E_{μ}
 - 2. observed angle θ_{μ} wrt to incoming ν direction


into one neutrino energy estimator. For a perfect detector, no Fermi momentum, and for a QE interaction:

$$E_{
u}^{QE} \equiv rac{1}{2} rac{2ME_{\mu} - m_{\mu}^2}{M - E_{\mu} + \sqrt{E_{\mu}^2 - m_{\mu}^2}\cos\theta_{\mu}} = E_{
u}$$

where $E_{\mu} = E_{vis} + m_{\mu} + E_{subC}$

• Another possibility is to do the analysis as a function of both observables $(E_{\mu}, \cos \theta_{\mu})$ separately. For real detector (MiniBooNE) and QE events only:



Systematic uncertainties

- Working on first guesses at flux and cross-section energy shape uncertainties
- How to treat systematic uncertainties in the analysis? Some possibilities that have been used in similar disappearance analyses (χ^2 analysis as example):
 - 1. Absorb systematic errors in the error matrix (e.g. CCFR84, CDHS)
 - 2. Treat parameters describing systematic uncertainties as fitting parameters with additional constraint terms in the χ^2 (e.g. CHOOZ, Bugey, K2K)
 - 3. Average χ^2 sampled over many random trials, weighted according to the probability density distribution of the systematic parameters (e.g. K2K)

u_{μ} disappearance sensitivity (qualitative)

• Two-neutrino approximation:

• MiniBooNE can extend low Δm^2 reach